首页 > 资讯 > 正文

圆的方程公式

时间:2025-05-09 00:53:52       来源: 网络

问题描述

圆的方程公式急求答案,帮忙回答下
精选答案
最佳答案

圆的普通方程:zdx²+y²+dx+ey+f=0; (d²+e²>4f)

圆版的标准方程:(x-a)²+(y-b)²=r²

圆的参数方程:x=a+rcosθ; y=b+rsinθ (θ为参数)

圆的切线方程

过圆x²+y²+dx+ey+f=0上一点(x0,y0)的圆的切线为x0x+y0y+½(x+x0)+½(y+y0)+f=0

过圆x²+y²=r²上一点(x0,y0)的圆的切线方程:x0x+y0y=r²

圆面积计算公式

公式:圆周率乘以半径的平方

用字母可以表示为:S=πr²或S=π*(d/2)²。(π表示圆周率,r表示半径,d表示直径)。

圆的面积=3.14×半径×半径

圆的周长=3.14×直径=3.14×半径×2

公式推导

圆周长(c):圆的直径(D),那圆的周长(c)除以圆的直径(D)等于π,那利用乘法的意义,就等于 π乘圆的直径(D)等于圆的周长(C),C=πd。而同圆的直径(D)是圆的半径(r)的两倍,所以就圆的周长(c)等于2乘以π乘以圆的半径(r),C=2πr。

把圆平均分成若干份,可以拼成一个近似的长方形。长方形的宽就等于圆的半径(r),长方形的长就是圆周长(C)的一半。长方形的面积是ab,那圆的面积就是:圆的半径(r)的平方乘以π, S=πr²。

我国古代的数学家祖冲之,从圆内接正六边形入手,让边数成倍增加,用圆内接正多边形的面积去逼近圆面积。

古希腊的数学家,从圆内接正多边形和外切正多边形同时入手,不断增加它们的边数,从里外两个方面去逼近圆面积。

古印度的数学家,采用类似切西瓜的办法,把圆切成许多小瓣,再把这些小瓣对接成一个长方形,用长方形的面积去代替圆面积。

16世纪的德国天文学家开普勒,把圆分割成许多小扇形;不同的是,他一开始就把圆分成无穷多个小扇形。圆面积等于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr²。

圆心坐标公式推导

圆的一般方程是x²+y²+Dx+Ey+F=0,此方程可用于解决两圆的位置关系:

配方化为标准方程:(x+D/2)2+(y+E/2)2=(D²+E²-4F)/4,

其圆心坐标:(-D/2,-E/2),

半径为r=[√(D²+E²-4F)]/2,

此方程满足为圆的方程的条件是:D²+E²-4F>0。

若不满足,则不可表示为圆的方程。

补充

x²+y²=1所表示的曲线是以O(0,0)为圆心,以1单位长度为半径的圆;

x²+y²=r²所表示的曲线是以O(0,0)为圆心,以r为半径的圆;

(x-a)²+(y-b)²=r²所表示的曲线是以O(a,b)为圆心,以r为半径的圆。

确定圆的方程主要方法是待定系数法,即列出关于a、b、r的方程组,求a、b、r,或直接求出圆心(a,b)和半径r,一般步骤为:

根据题意,设所求的圆的标准方程(x-a)²+(y-b)²=r²;根据已知条件,建立关于a、b、r的方程组;解方程组,求出a、b、r的值,并把它们代入所设的方程中去,就得到所求圆的方程。

圆的一般式的圆心和半径

圆(一种几何图形)在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。

在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},圆的标准方程是(x-a)²+(y-b)²=r²。其中,o是圆心,r是半径。圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。